PHYSICS

DATE: 4 June 2009

DURATION OF EXAMINATION :

3 hours (180 minutes)

MATERIAL ALLOWED :

Calculator (not programmable and not graphic)

PARTICULAR REMARKS :

- Choose 4 questions from the 6 given questions.
- Indicate your choice of questions by placing a cross in each appropriate box on the supplied form.
- Use a different examination sheet for each question.
Question 1

| | Page $1 / 2$ |
| :--- | :---: | | Gliese 581 is a red dwarf star situated in the constellation of Libra, at a distance of |
| :--- |
| approximately 20 light years from our solar system. |

Currently, three exoplanets (planets outside our solar system) have been detected orbiting round Gliese 581. They are called Gliese $581 \mathrm{~b}, \mathrm{c}$ and d. Their orbits are approximately circular.
The table below lists the data concerning the three exoplanets. In the case of each exoplanet, its mass m is given as a multiple of the mass of the earth m_{T}, its period of revolution T is given in days (d) and the radius of its orbit R is given in astronomical units (AU).

Exoplanet	m / m_{T}	T / d	R / AU
Gliese 581 b	15.6	5.37	0.041
Gliese 581 c	5.1	12.9	0.073
Gliese 581 d	7.6	83.6	0.25

a) i. Check that $\frac{T^{2}}{R^{3}}$ has approximately the same value for the three exoplanets.

3 marks

4 marks

2 marks 2 marks
iii. Calculate the mass of the star Gliese 581 using the data given in the table for the exoplanet Gliese 581 d .

Question 1	
Page $2 / 2$	Mark
b) The exoplanet Gliese 581 c was discovered on the 4 th April 2007 by a team of French, Portuguese and Swiss astronomers. Its radius is 1.5 times that of the Earth. The distance separating it from its star is such that its average temperature could be between $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$, which would allow for the presence of liquid water on its surface. At the present time, it is the exoplanet that most resembles our Earth. i. Calculate the gravitational field strength (acceleration due to gravity) at the surface of Gliese 581 c . ii. 1. Derive the formula for the escape velocity from the surface of a planet. 2. Calculate the escape velocity from the surface of Gliese 581 c . iii. Imagine that this exoplanet is inhabited and that its inhabitants decide to put a 400 kg satellite in circular orbit at an altitude of 900 km above its surface. 1. Calculate the period of such a satellite. 2. Calculate the force of gravitation between the planet and the satellite at this altitude. 3. Calculate the mechanical energy of the satellite in orbit. Given: universal gravitational constant $G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$; mass of the Earth .. $m_{\mathrm{T}}=5.97 \times 10^{24} \mathrm{~kg}$; radius of the Earth.. $R_{\mathrm{T}}=6.37 \times 10^{6} \mathrm{~m}$; astronomical unit ... $1 \mathrm{AU}=1.50 \times 10^{11} \mathrm{~m}$; 1 day \qquad $1 \mathrm{~d}=8.64 \times 10^{4} \mathrm{~s}$.	4 marks 3 marks 1 mark 3 marks 2 marks 3 marks

Question 2	
Page 1/2	Mark
In this question gravitational forces may be considered negligible. A mass spectrometer consists of five parts, as shown in the diagram: - ionisation chamber - acceleration chamber - velocity selector - deflection chamber - detector.	
a) Positive ions are emitted from the ionisation chamber and enter the accelerating chamber with negligible speed, where they are accelerated by the electric field \vec{E} between two parallel plates (see figure). The potential difference U between the plates is adjustable. i. State the direction of the electric field \vec{E} in the accelerating chamber. Justify your answer. ii. Ions of mass m and charge q leave the accelerating chamber with speed v. Derive an expression for U as a function of m, q and v. iii. Calculate the accelerating potential difference U so that He^{+}ions leave the accelerating chamber with a speed of $v=2.40 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$.	2 marks 3 marks 2 marks

Question 3	
Page 1/2	Mark
a) One end V of an elastic string is fixed to a vibrating system. The other end of the string is passed over a pulley wheel and is attached to a mass m, which exerts a tension F on the string. The part of the string between V and the point P at the top of the pulley has length L. P and V may be considered as nodes of vibration. The string is found to resonate at certain frequencies. i. Show that the mass m is related to a resonance frequency f by the relationship $m=\frac{4 L^{2} \mu}{n^{2} g} f^{2}$ where n is the number of antinodes between V and P , and μ is the linear density (mass per unit length). ii. In an experiment $L=1.20 \mathrm{~m}$ and the mass of the string between V and P is 1.92 g . With a frequency of $f=120 \mathrm{~Hz}$ four antinodes are observed. 1. Calculate the mass m required to obtain this resonance. 2. Calculate the speed of the wave in the string. 3. Calculate the fundamental resonance frequency of the string. 4. When the mass $m=1.00 \mathrm{~kg}$, explain whether or not resonance will occur at $f=120 \mathrm{~Hz}$.	5 marks 2 marks 4 marks 2 marks 3 marks

Question 3			
	Page 2/2	Mark	

b) A tuning fork of frequency 1.00 kHz is held over a tube containing water. The level of water in the tube can be changed by moving the reservoir on the right vertically (see figure below).
A student observes resonance in the air column when its length L is:
$8.5 \mathrm{~cm}, 25.8 \mathrm{~cm}, 43.0 \mathrm{~cm}$ and 77.5 cm .

i. The student missed one of the positions at which resonance occurs. Calculate a value for the length that is missing between the measured lengths.
ii. Calculate the speed of sound in air.
iii. Draw a diagram to show the displacement nodes and antinodes of the
stationary wave produced when $L=43.0 \mathrm{~cm}$.

Given:

acceleration due to gravity. \qquad $g=9.81 \mathrm{~m} \mathrm{~s}^{-2} ;$
speed of propagation v of a wave along a stretched string

$$
v=\sqrt{\frac{F}{\mu}},
$$

where F is the tension and μ is the linear density (mass per unit length).

Question 4	
Page $1 / 2$	Mark
a) Monochromatic light of wavelength λ is incident on a double slit. The centres of the slits are separated by distance d. An interference pattern is observed on a screen at a distance L from the double slit. i. 1. Derive the relationship $d \sin \theta_{n}=n \lambda$ using a labelled diagram. 2. Using the above relationship, derive the formula $x_{n}=n \lambda \frac{L}{d},$ where x_{n} is the distance from the central maximum to the maximum of order n. Explain the approximation used. 3. Show that the distance Δx between two consecutive maxima is given by $\Delta x=\lambda \frac{L}{d} .$ ii. A laser beam is directed on a double slit of slit separation 0.25 mm . An interference pattern is observed on a screen at a distance of 2.00 m from the double slit. On the diagram 11 maxima are shown. The distance between the outermost maxima shown on the diagram is 50 mm . Calculate the wavelength of the laser light used. iii. The double slit is replaced by a double slit with a smaller slit separation. What effect does this have on the interference pattern? Explain your answer.	4 marks

Question 6		
	Page 1/1	Mark
	In the upper atmosphere a ${ }_{6}^{14} \mathrm{C}$ nucleus is formed as a result of a collision between a neutron and a ${ }_{7}^{14} \mathrm{~N}$ nucleus. Write down the equation describing the formation of ${ }_{6}^{14} \mathrm{C}$.	3 marks
	${ }_{6}^{14} \mathrm{C}$ is radioactive and disintegrates to ${ }_{7}^{14} \mathrm{~N}$. i. Write down the decay equation. ii. Calculate the energy released in this process. Give the answer in MeV and J .	2 marks 4 marks
	The number N of radioactive nuclei remaining in an initial sample of N_{0} radioactive nuclei after time t is given by the equation $N=N_{0} e^{-\lambda t}$ where λ is the decay constant of the radioactive isotope in the sample. i. Define the term half-life $T_{1 / 2}$ of a radioactive isotope. ii. Show that $\lambda T_{1 / 2}=\ln 2$. iii. The half-life of ${ }_{6}^{14} \mathrm{C}$ is $T_{1 / 2}=5.73 \times 10^{3}$ years. Calculate the decay constant λ for ${ }_{6}^{14} \mathrm{C}$.	2 marks 3 marks 1 mark
	It is known that the activity of 1.00 g of carbon in any living organism is 15.3 disintegrations per minute. This radioactivity is due to the presence of ${ }_{6}^{14} \mathrm{C}$ and after death the quantity of ${ }_{6}^{14} \mathrm{C}$ decreases. The activity of 1.00 g of carbon in a piece of fossilised wood is 8.1 disintegrations per minute. Calculate the age of the piece of wood.	5 marks
e)	Calculate the percentage of carbon-14 remaining in carbon from a 40000 years old piece of fossilised wood. Given: atomic mass of ${ }_{6}^{14} \mathrm{C}$ \qquad 14.003242 u ; atomic mass of ${ }_{7}^{14} \mathrm{~N}$ \qquad 14.003074 u ; mass of the electron. \qquad $m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$; speed of light in vacuum \qquad $. c=3.00 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1} ;$ elementary charge \qquad $. e=1.60 \times 10^{-19} \mathrm{C}$; atomic mass unit \qquad $1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}=931 \mathrm{MeV} / c^{2}$.	5 marks

